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WaterSENSE consortium members 
The WaterSENSE consortium consists of 7 partners: eLEAF BV (Netherlands), Hydrologic Research 

(Netherlands), Water Technology (Australia), Hidromod (Portugal), hydro & meteo (Germany), the 

University of Sydney (Australia) and HCP International (Netherlands). 

 

 

 

 

 

 

WaterSENSE Challenge 
Deliver a modular approach to water accounting across the landscape: 

• Observe water balance components using Remote Sensing (RS). 

• At all scales (from “within field” scales to landscape/catchment scales). 

• Crop water use, water storage, water application in a closed farm water balance. 

• Vegetation condition, wetland flooding, quantifying environmental flow delivery. 

WaterSENSE Project Objectives 
• Water Monitoring System: Modular, operational, water monitoring system: 

Integrates Copernicus EO data, ground radar, models, in-situ data, and novel research. 

• Water Management Toolbox: Makes data, algorithms and services available to 

users. Various Apps provide reliable, actionable Information. 

• Flexible Service Subscription models. 

• Flexible Front Ends. 
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Research and Services Updates 
Rainfall Data 
WaterSENSE has studied the potential to downscale the existing IMERG Satellite rainfall data (near real 

time) to provide a spatial product at 1 km scale, using Satellite derived soil moisture (TOTRAM) and 

validating the results against the rain gauge adjusted radar rainfall data for the Namoi Radar 

(previously implemented in WaterSENSE). 

 

Regrettably, the conclusion is that the use of this soil moisture data is not a feasible downscaling tool 

for rainfall. 

 

 
 

Regional farm scale water balance pilot with the NSW 

DPE 

 

 

 

The WaterSENSE consortium has been requested by the NSW DPE to deliver a pilot farm water balance 

data and visualisation service using RS data across the 55JGG Sentinal 2 tile in Narrabri. This includes 

the provision of the following information per lot and farm dam on a weekly timestep: 

• Farm Gains: 
o Gauge adjusted Radar rainfall data from the Narrabri Radar. 
o Incremental ET due to applied irrigation from eLEAF’s HSP algorithm. 

• Farm Losses: 
o Evapotranpiration (ET) from eLEAF’s ETLook algorithm 
o Percolation from HidroMOD’s HydroAquaFarm model 
o Runoff from HidroMOD’s HydroAquaFarm model. Runoff is divided into two parts, the 

runoff potentially available for on farm retention and runoff losses. 
o Soil Water Content from HidroMOD’s HydroAquaFarm model 

• Farm Dam Balance: 
o Farm Dam area and change in area from Sentinel 2 derived Fisher Water Index data 

(other water detection algorithms can also be applied) 
o Farm Dam Volume and volume change, using dam area volume curves from the DPE. 
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This information is being provided through the HydroNET Water Control Room. A screenshot of the 

HydroNET dashboard for the farm water balance is shown in Figure 1 below. 

 

 
Figure 1: HydroNET dashboard for the WaterSENSE water use monitoring and farm water balance pilot service for the DPE. 

HydroAquaFarm model 
HIDROMOD have developed the new HydroAquaFarm model for the farm water balance service. 

HydroAquaFarm uses a deterministic approach to simulate the water at the parcel scale. The primary 

purpose of the model is to provide insight into the water balance of a given parcel and to help users 

understand the factors that influence water availability and water use. HydroAquaFarm calculates soil 

moisture, percolation, runoff, evapotranspiration and infiltration by using a set of numerical equations 

that describe the physical processes that govern water movement in the soil. HydroAquaFarm 

calculates the water volume balance in the soil using evapotranspiration, precipitation, crop 

coefficient, and irrigation as boundary conditions. The model considers evapotranspiration, 

percolation, and runoff losses as negative balance terms and precipitation and irrigation as positive 

balance terms. Refer to Figure 2 for a fluxogram of the model. 
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Figure 2: Fluxogram of the HydroAquaFarm model. 

 

Updated ETLook algorithm for Evapotranspiration data 

eLEAF has been working on creating a new cloud-based (AWS) data factory for global ET modeling at 

various resolutions (10m, 100m, 300 m) and are currently finalising the delivery of this ET data to the 

FAO WAPOR website. 

 

ETLook algorithm overview: 
The main strength of the ETLook model is that it tries to solve the energy balance (Figure 3), in 

contrast to many Kc-related ET models. The meteorological inputs used for the model, such as solar 

radiation, air temperature, vapor pressure, and wind speed, are mainly based on geostationary 

satellite observations and numerical weather models. Evaporation and transpiration are also 

modeled separately. To understand the evapotranspiration processes in high detail, optical and 

thermal satellite observations are acquired. The optical multispectral observations are provided by 

the Sentinel-2 constellation to ensure the highest spatial and temporal resolution. To include the effect 

of water stress on evapotranspiration, thermal satellite data from VIIRS is used and downscaled to 

produce a high-resolution rootzone soil moisture product. The soil moisture product is subsequently 

converted into a stress coefficient. Since optical and thermal remote sensing data is used, potential 

clouds need to be masked, which is done by a machine-learning based cloud mask. 
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Figure 3: Schematic diagram illustrating the main concepts of the ETLook model, where two parallel Penman-Monteith 

equations are solved. For transpiration the coupling with the soil is made via the subsoil or root zone soil moisture content 

whereas for evaporation the coupling is made via the soil moisture content of the topsoil. Interception is the process where 

rainfall is intercepted by the leaves and evaporates directly from the leaves using energy that is not available for 

transpiration. 

Global comparisons and validation 
As part of the global ET data production and delivery to the FAO, eLEAF have conducted an initial soil 

moisture validation study for Africa and the Middle East using SMAP L4 data. Further to this, the ETLook 

model has been validated independently by IHE Delft as part of the FAO WaPOR program (Blatchford 

et al., 2020). 

Initial comparisons in Australia 
During the WaterSENSE project, the ETLook model has been compared with other available ET 

models for Australia (CMRSET and IrriSAT) for a single Sentinel 2 image tile covering Narrabri (55JGG). 

Further Validation is ongoing. A condensed summary of the initial comparison is provided below and 

in figure 4 and 5. 

Initial comparisons show that for well-watered cropland, both models (ETLook & CMRSET) yield 

comparable results. 

The ETLook and CMRSET have different mechanisms to account for water stress. CMRSET relies on 

the global vegetation moisture index (GVMI). ETLook’s soil moisture model is based on the research 

of Yang et al. (2015) and is often referred to as the Thermal Optical Trapezoid Method (TOTRAM), 

combining land surface temperature (LST) observations with NDVI. 

For rainfed agriculture, especially in dry years, the GVMI produces much higher soil moisture 

estimates compared to the TOTRAM model. This results in less stress for the crop and therefore 

higher evapotranspiration estimates. 
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GVMI is also acknowledged to be sensitive to bare soil, and the most optimal results are generated for 

pixels with a leaf area index (LAI) above 2 m2/m2 (Ceccato et al., 2002). CMRSET, therefore, tends to 

provide higher ET in dry areas with limited vegetation coverage as compared to ETLook. 

 
Figure 4: R2, RMSE, and KGE calculated for the comparison between ETa data from ETLook and CMRSET for each year 

separately during the 2017-2020 study period. 

 
Figure 5: Comparison between ETLook’s soil moisture model (TOTRAM) and CMRSET’s soil moisture index (GVMI) per year 

for the 2017-2020 study period. 
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Incremental ET due to irrigation – Improvements to the 

HSP model 
A number of updates have been made to the Hydrologically Similar Pixels (HSP) model since 

the last newsletter. 

Firstly, incremental evapotranspiration (𝐸𝑇𝑖𝑛𝑐r) is now calculated for all agricultural pixels 

within a land cover mask, in contrast to only the irrigated agricultural pixels in the previous 

version. This change enables detection of irrigation outside known irrigated areas, which is 

important for detecting illegal irrigation, irrigation on new farms, or irrigation on previously 

rainfed farms. 

Previous ETincr correction factor no longer applicable 
However, the paramaterisation of the previous HSP model resulted in significant 

overestimation of irrigation for newly included rainfed agriculture pixels. The culprit was the 

correction factor applied to all natural vegetation pixels to artificially reduce the natural ET in 

the model. This correction was based on the assumption that you cannot directly compare the 

ET of natural vegetation against irrigated crops, as natural vegetation will generally have a 

deeper rooting depth than irrigated landuse, being more resilient to drought. The correction 

factor was implemented by setting the rooting depth of natural pixels to 1.5x that of irrigated 

landuse pixels. This changed the total available water in the model, which was subsequently 

used to correct the natural ET. Validation data from three different countries (Spain, South 

Africa, and Australia) showed that this correction yielded the most accurate water use 

estimates for irrigated crops. 

Unfortunately, the rooting depth assumption is not valid for rainfed crops, as these crops will 

also have deeper rooting depths when compared to irrigated crops. The application of the 

same factor used previously for irrigated landuse pixels on rainfed agriculture pixels thus 

resulted in an artificial irrigation signal for the rainfed crops. 

To mitigate this issue, eLEAF needed to find a way to differentiate irrigated from rainfed 

agriculture pixels and only apply a correction factor to irrigated pixels. 

Instantaneous irrigated land use detection algorithm implemented 
Previously, as explained in newsletter 5, the ETincr was used to generate irrigated area maps 

on an annual basis. However, this meant that we could only apply a revised correction factor 

after the end of the season, which is not too useful for clients. 

We needed to be able to detect irrigation instantaneously, and we reverted to the HSP 

algorithm itself to do so. The HSP algorithm was initially set up to only compare the ET of 

irrigated and natural pixels. However, it can also be used to compare other kinds of datasets 

to understand the difference between irrigated and rainfed conditions. After some testing and 

literature research, we settled on two datasets that can help us understand if a pixel is being 

irrigated or not. 
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The first dataset is ETLook’s soil moisture product. This product is based on land surface 

temperature (LST) and NDVI and is used in the ETLook model to calculate the water stress of 

a crop. Since irrigation reduces water stress, there should be a difference in soil moisture 

content when comparing hydrologically similar natural and irrigated agricultural pixels. If this 

difference is positive, we mark this as a sign of a pixel being actively irrigated. In many cases, 

we found this to be true. However, we also saw that some agricultural areas near rivers also 

showed elevated soil moisture levels whilst no signs of irrigation could be seen from satellite 

images (Figure 6). 

 

Figure 6: Overview of the incremental ET, soil moisture difference, and adjusted water use efficiency to produce irrigation 

classes on a weekly basis. Note that the area in the centre of the images are agricultural pixels near a river where no signs 

of irrigation are detected but still positive ETincr values are observed. The final irrigation class shows that when using the 

soil moisture difference and adjusted water use efficiency, these riverine areas are not being detected as irrigated 

agriculture anymore. 

Therefore, we introduced a second dataset to account for these kinds of agricultural areas. 

This dataset relied on different versions of the water use efficiency. The water use efficiency 

is a product that is standard in the FAO WaPOR dataset, which is defined by dividing the total 

biomass or net primary production (NPP) by the actual evapotranspiration. However, this 

standard water use efficiency only tells you something about how efficiently the crop uses all 

the available water (rain + irrigation) to grow, yet we are mostly interested in the irrigated 

portion of the water use efficiency, which is normally very difficult to come by. Fortunately, 

since we have the HSP algorithm as a means to differentiate between rainfed and irrigated 

conditions, we were able to give an estimate of the irrigated water use efficiency. 

Normally, irrigation systems are less efficient than rainfed agriculture in terms of water use. A 

poorer irrigation water use efficiency, therefore, means a higher likelihood of a pixel being 

irrigated. To translate these different versions of the water use efficiency to a proxy of 

irrigation likelihood, we derived the following equation: 
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With 𝑁𝑃𝑃𝑎𝑔𝑟 and 𝑁𝑃𝑃𝑛𝑎𝑡 as the net primary production [g/m2] and 𝐸𝑇𝑎𝑔𝑟 and 𝐸𝑇𝑛𝑎𝑡 as 

the actual evapotranspiration [mm] of the agricultural and natural pixel, respectively. 𝐸𝑇𝑖𝑛𝑐𝑟 

is defined as the difference between 𝐸𝑇𝑎𝑔𝑟 and 𝐸𝑇𝑛𝑎𝑡. The subsequently adjusted water use 

efficiency (𝐴𝑊𝑈𝐸) is a proxy for irrigated conditions. A positive 𝐴𝑊𝑈𝐸 indicates that the sum 

of the total water use efficiency of the agricultural pixel (𝑊𝑈𝐸𝑎𝑔𝑟) and the natural pixel 

(𝑊𝑈𝐸𝑛𝑎𝑡) is larger than the irrigated water use efficiency of the agricultural pixel (𝐼𝑊𝑈𝐸), 

meaning that the agricultural pixel is not as efficient in using the irrigation water for biomass 

growth compared to using precipitation only. The more inefficient the irrigation system is, the 

higher the adjusted water use efficiency. 

To create an instantaneous irrigated area map, we combine the 𝐸𝑇𝑖𝑛𝑐𝑟 outputs with these 

two datasets to define five discrete classes. If the weekly 𝐸𝑇𝑖𝑛𝑐𝑟 is above 20 mm, we 

immediately classify the pixel as irrigated agriculture (4). If the 𝐸𝑇𝑖𝑛𝑐𝑟 is between 5 and 20 

mm per week and both the soil moisture difference and adjusted water use efficiency are 

positive, we deem it highly likely that a pixel is being actively irrigated (3). If for the same 

𝐸𝑇𝑖𝑛𝑐𝑟 range the soil moisture difference is negative, we deem the likelihood of a pixel being 

irrigated to be moderate (2). If the soil moisture difference is positive but the adjusted water 

use efficiency is negative, irrigation is even more unlikely, and the high 𝐸𝑇𝑖𝑛𝑐𝑟 might be 

introduced by agricultural pixels in riverine regions with abundant available water (1). Finally, 

if the 𝐸𝑇𝑖𝑛𝑐𝑟 is below 5 mm per week, we do not see any sign of active irrigation (0). 

From these classes, we eventually generate an irrigated area map (Figure 7). If the class is 4, 

we assign a pixel to be irrigated. Once a pixel is marked as being irrigated, we do not change 

the classification until the irrigation class becomes 0. If the irrigation class was 0 or 1 for the 

previous observation and the class of the current observation is 3, we assign the pixel to be 

potentially irrigated. If a pixel is being potentially irrigated for an entire season, but never 

marked as irrigated we assume there is abundant agricultural activity but limited use of 

irrigation. 

New ETincr correction process using irrigation efficiency  
Using the unadjusted 𝐸𝑇𝑖𝑛𝑐𝑟 to estimate the irrigated water use of a farm showed a general 

underestimation. This underestimation was previously corrected with the mentioned 

correction factor, but since we now have an understanding of which pixels are irrigated, we 

can focus on other reasons why the 𝐸𝑇𝑖𝑛𝑐𝑟 generally underestimates the total water use. The 

biggest difference between the water use observations of a water meter and our remote 

sensing based estimates is that we do not account for water losses during the irrigation 

activities due to open water evaporation, percolation, and runoff. We only observe the 

amount of irrigation water used by the crop for evapotranspiration processes. Therefore, we 

introduced the irrigation efficiency (%) to correct the 𝐸𝑇𝑖𝑛𝑐𝑟 and generate more reliable 

outputs. In the literature, we found that for furrow irrigation in Namoi, the irrigation efficiency 

is typically around 70%. The newly adjusted 𝐸𝑇𝑖𝑛𝑐𝑟 is calculated as follows: 
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. 

A quick validation using water meter data from 2017-2018 showed that the adjusted 𝐸𝑇𝑖𝑛𝑐𝑟 

does not heavily underestimate or overestimate the water use and is the most reliable result 

we have generated so far. Future research will focus on introducing a variable irrigation 

efficiency, depending on the irrigation type. 

 

Figure 7: Two examples of an instantaneous irrigation mask for the first week of January (top) and the last week of February 

(bottom), 2023. 

 

Open water detection and “growing” detected pixels 

under the trees 
Challenges in using remote sensing to quantify surface water for environmental watering 

include: 

• Cloud coverage 

• Shadows 
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• Vegetation canopy above the water 

• Small water bodies with long perimeters compared to their area. 

The University of Sydney is investigating the merits of a novel algorithm that uses DEM derived 

probability of depression (pdep) data to “grow” satellite-identified water patches to be 

hydrologically sensible and connected (Figures 8 and 9). The algorithm checks the adjacent 

pixels of the pdep map against threshold condition. If yes, a pixel is added to the region of the 

seed pixel as per the workflow below: 

     

Figure 8: Probabilty of depression analysis workflow 

This algorithm will be further verified and a paper is in production. The service is being 

demonstrated across the lower Goulburn River in collaboration with the Goulburn Broken 

CMA. 

 
Figure 9: Rossi et al. in prep. Comparison of water detection from WOfS, Sentinel 2 (Fisher Index) and the pdep algorithm 

using 10m and 1m DEM data respectively. 

Percentile 50 pdep 

inside the seed 
Pdep of pixel  > 
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Vegetation condition parameters 

We aim to provide timely information from remote sensing data and algorithms on the extent, health 

and water-use of wetland vegetation to support the impact of environmental flow releases on riparian 

and floodplain vegetation condition. Two parameters being explored across the lower Goulburn River 

in collaboration with the Goulburn Broken CMA are the Vegetation Condition Score (VCS) and the 

Biomass Production Score (BPS). 

Vegetation Condition Score 
VCS uses basic Biomass production data to assesses the current condition of vegetation condition by 

comparing the observed biomass to a cumulative probability plot of the long-term statistics (2017 to 

2021 in the case of WaterSENSE) for the same week period (figure 10). 

Where: 

p is the probability of biomass value occurrence of a pixel 

m is the rank of the biomass value for a pixel 

n is the number of years involved in the analysis 

VCS helps understanding: 

• What the relative vegetation condition change over time is, independent of neighboring pixels. 

• What areas are most affected by droughts, flow or other human activities, over a longer period.  

 
Figure 10: Biomass Production vs the Vegetation Condition Score, Goulburn river (Reach-1+2), 21 Nov, 2021 

Vegetation Condition Score based on Ecological Vegetation Classes 
Further insight can potentially be gained if the biomass data is aggregated to Ecological Vegetation 

Classes (EVC’s) provided by the Department of Energy, Environment and Climate Action (DEECA, 

Victoria. These EVC’s underpin the implementation of Victoria's Native Vegetation Management 

Framework, and the preparation of Regional Vegetation Plans. 

WaterSENSE has thus conducted some initial comparisons of the VCS between EVC’s. Comparisons 

within an EVC will be reported on in the next newsletter. The maps below (Figure 11) show vegetation 

condition based on vegetation class instead of pixels. 
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Ecological vegetation classes (EVC) 

 
VCS based on EVC 

 
EVC’s (Grouped) 

 
VCS based on EVC (group) 

 
EVC (Sub Group) 

 
VCS based on EVC (sub group) 

Figure 11: Vegetation condition based on vegetation class instead of pixels. The maps shows EVC’s, their grouped classes, 

sub-grouped classes, and their corresponding vegetation condition maps for 21 Nov 2021. 
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Figure 12 indicates that the average condition of Creekline Grassy Woodland is very low (0.2) while the 

condition of Drainage-line Aggregate/Riverine Swamp Forest Mosaic is very high. Figure 13 shows that 

the average condition of wetlands is highest while non-native vegetation has the lowest condition. 

Figure 14 demonstrates that poorly draining area has the lowest condition. 

Pixel-based 

 

EVC

 

EVC group

 

EVC subgroup

 

 
Figure 12: Average vegetation condition per ecological vegetation class, 21 Nov 2021 

 
Figure 13: Average vegetation condition per ecological vegetation class (grouped), 21 Nov 2021 
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Figure 14: Average vegetation condition per ecological vegetation class (sub-grouped), 21 Nov 2021 

Biomass Production Score 
BPS scores biomass production of a pixel against a set benchmark (potential biomass production). BPS 

tells how a biomass production of a pixel performs in relation to other pixels in the area of interest. 

 Where: 

 BPS is biomass production score (-) 

 B is actual biomass production (g C m-2 day-1) 

 B5 is 5th percentile of biomass in the area of interest (g C m-2 day-1) 

 B99 is 99th percentile of biomass in the area of interest (g C m-2 day-) 

 
Figure 15: Biomass Production Score, Goulburn river (Reach-1+2), 21 Nov, 2021. 
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BPS helps understanding: 

• The performance of vegetation production of each pixel relative to other pixels (same vegetation 

type) in the area of interest (AOI). 

• The spatial trends of biomass score (proximity to river or lake, upstream or downstream reach) 

• How the average performance of an AOI ichanges with the flow release. 

Conferences 
Since the previous newsletter , the WaterSENSE partners have attended and presented at the following 

Conferences (underlined names are WaterSENSE partner): 

• MODSIM 2023 – Darwin, Australia: 

o WaterSENSE: Update on implementing Water Use Monitoring and Assessment 

Services. S. Wonink, B. Jackson, J. Brombacher,  R.W. Vervoort, T. Einfalt, M. 

Alderlieste, P. Chambel Leitão, M. Noort, AR. Safi. 

• International SWAT Conference 2023 - Aarhus, Denmark:  
o Operational Hydrological Models for Water Management: Case Studies from Australia, 

Brazil, and Portugal. P. Chambel Leitão, M. Alderlieste, B. Jackson. 

• Flood Management Australia 2023 - Sydney, Australia:  

o The unexpected use of the Goulburn Broken Community Flood Intelligence Portal – A 

Shepparton case study. J Leister, B Jackson, G Tierney, Y Zhu. 

• GEO (Group on Earth Observations) Symposium, June 13 - 14, Geneva, Switzerland 

• GEO Open Data and Open Knowledge Workshop, June 15 - 16, Geneva, Switzerland 

o M. Noort. Participated in the GEOGLoWS (GEO Global Water Sustainability) practical 

session, brifign attendees on WaterSENSE progress. 

Research Update 
List of Publications 
Please find a list of published papers from WaterSENSE below: 

• Ignacio Fuentes, Richard Scalzo, R. Willem Vervoort. Volume and uncertainty estimates of on-

farm reservoirs using surface reflectance and LiDAR data. Environmental Modelling & 

Software, Volume 143, 2021, 105095. ISSN 1364-8152. 

https://doi.org/10.1016/j.envsoft.2021.105095. 

• Strehz, Alexander, and Thomas Einfalt. 2021. Precipitation Data Retrieval and Quality 

Assurance from Different Data Sources for the Namoi Catchment in Australia. Geomatics 

1, no. 4: 417-428. https://doi.org/10.3390/geomatics1040024T. Download here. 

• R. Willem Vervoort, Ignacio Fuentes, Joost Brombacher, Jelle Degen, Pedro Chambel-Leitão, and 

Flávio Santos. Progress in detailed water productivity analysis at global locations. 

• Ignacio Fuentes, Jos´e Padarian, R. Willem Vervoort. Towards near real-time national-scale 

soil water content monitoring using 2 data fusion as a downscaling alternative. Journal 

of Hydrology, Volume 609, 2022, 127705, ISSN 0022-1694, 

https://doi.org/10.1016/j.jhydrol.2022.127705. 
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• Brombacher, J., Silva, I., Degen, J., Pelgrum, H., 2022. A Novel Evapotranspiration Based 

Irrigation Quantification Method Using the Hydrological Similar Pixels Algorithm. 

Agricultural Water Management, Volume 267, 2022, 107602, ISSN 0378-3774, 

https://doi.org/10.1016/j.agwat.2022.107602. 

• A Strehz, J Brombacher, J Degen, T Einfalt. Feasibility of Downscaling Satellite-Based 

Precipitation Estimates Using Soil Moisture Derived from Land Surface Temperature. 

Atmosphere 14.3 (2023): 435. 

Other relevant papers by consortium members: 

• Fuentes, Ignacio & Padarian, José & Van Ogtrop, Floris & Vervoort, Rutger Willem. (2019). 

Spatiotemporal evaluation of inundated areas using MODIS imagery at a catchment 

scale. Journal of Hydrology. 573. 10.1016/j.jhydrol.2019.03.103. 

• HydroNET SCOUT: 

• Jasper-Tönnies, A., Hellmers, S., Einfalt, T., Strehz, A., Fröhle, P. (2018) Ensembles of radar 

nowcasts and COSMO-DE-EPS for urban flood management, Water Science and Technology, 

DOI: 10.2166/wst.2018.079 

• Einfalt, T., Lürs, S., Grottker, M., Schäfers, B., Schlauss, S., Frerk, I. (2015): Flash flood warning 

for emergency management. 10th International Workshop on Precipitation in Urban Areas, 1-

5 December 2015, Pontresina. 

• Einfalt, T., Lobbrecht, A., Leung, K., Lempio, G. (2013) Preparation and evaluation of a Dutch-

German radar composite to enhance precipitation information in border areas, Journal of 

Hydrologic Engineering – ASCE, DOI:10.1061/(ASCE)HE.1943-5584.0000649. 

• Lobbrecht, A., Einfalt, T., Reichard, L., Poortinga, I. (2012) Decision support for urban drainage 

using radar data of HydroNET-SCOUT. IAHS Publ. 351, p.626 - 631. 

Connect with us!  

LinkedIn: Project WaterSENSE  

 

 

Twitter: @MakeWaterSENSE 

 

Or contact: 

Australia: Brian Jackson 

brian.jackson@watertech.com.au 

Phone: +61 3 8526 0800 

 

Global: Steven Wonink 

watersense@eleaf.com 

Phone: +31 317 729003 


